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Abstract—Paroxysmal sympathetic hyperactivity (PSH) is an
important clinical problem of severe traumatic brain injury
(TBI) which incurs approximately 90% of all TBI-related costs.
However, current detection approach is hampered by no con-
sensus clinical diagnostic criteria, paroxysmal episode feature
with complex manifestations, and already overloaded clinical
activities. These limitations cause delayed recognitions which
result in poor clinical outcomes. In this paper, we design an
integrated Medical Cyber-Physical System (Medical CPS) for
early detection of paroxysmal sympathetic hyperactivity patients.
First, a formal model is proposed to describe clinical diagnostic
criteria. With the formalized models employed, we implement
an early detector and integrate it with revised medical device
adapters into Medical CPS. Our system will monitor patient
conditions automatically and continuously to relieve medical staff
from the heavy burden of clinical activities and provide timely
decision supports. Evaluations on 107 clinical cases extracted
from medical publications demonstrate the effectiveness and the
efficiency of our integrated system.

Index Terms—Paroxysmal Sympathetic Hyperactivity; Medical
Cyber-Physical System; Early Detection

I. INTRODUCTION

Paroxysmal sympathetic hyperactivity (PSH) is a syndrome
manifested with: simultaneously increased heart rate, respira-
tory rate, blood pressure, body temperature and other clinical
features, such as severe sweating, posturing, etc. It is primarily
caused by traumatic brain injury (TBI). Every year, TBI affects
millions of Americans, in which up to 33% severe patients
have been reported with PSH [7], [13]. Delayed recognition of
PSH may increase morbidity, resulting in long-term disability,
even death1. This situation causes approximately 90% of all
TBI-related costs which is worth millions of dollars [10].

To detect PSH, physicians have devoted great efforts to
propose a number of diverse criteria sets according to clinical
experience [21], [22]. However, through the discussions with
physicians, underdiagnoses and misdiagnoses are particularly
common in current clinical diagnosis and treatment. First,
no universally accepted clinical diagnostic criteria exist be-
cause of the limited evidence of pathophysiology and the

1Cases reported in [21] showed that only 7% of PSH patients achieved a
moderate or good recovery, however, 45% with severe disability, 30% with
persistent vegetative state and 18% with death.

evolution of PSH definition. Thus, many physicians learn a
little background on it. Second, PSH is a syndrome with
complex manifestations to which a lot of conditions have
similar appearances. Third, the paroxysmal clinical feature
requires symptoms to be recurrent and episodic to make a
diagnosis. Unfortunately, medical staff are already overloaded
at hospitals, and it is impractical to perform frequent clinical
monitoring activities.

In this paper, we design an integrated Medical Cyber-
Physical System (Medical CPS) for early detection of PSH
based on the existing medical knowledge. Efforts to improve
medical aspects are out of the scope of this paper. First, we
propose a formal model to describe diverse clinical criteria sets
uniformly. Physicians can utilize multiple well-known clinical
diagnostic criteria sets with a weight vector to monitor a pa-
tient. It can reduce physicians’ memory load and augment the
detection capacity. We implement an early detector in terms of
the formal models and integrate it with medical device adapters
which are revised on Integrated Clinical Environment [1] into
a medical CPS to observe patient vital signs automatically and
continuously, which reduces medical staff burden and provides
timely decision supports. In our system, we accumulate patient
data and usages of clinical criteria in a format which can be
used by data science research. To the best of our knowledge,
this is the first study on applying Medical CPS to perform early
detection of PSH. We evaluate our approach on 97 real-world
clinical cases extracted from medical publications on PSH and
10 cases from overlap syndromes which have similar clinical
features. Compared to the current approach, our work is able
to early detect 17.5% more PSH patients with almost the same
false positive rate (3.12%).

This paper is organized as follows. Related work is intro-
duced in Section II. Section III presents a formal diagnostic
criteria model to describe diverse clinical criteria and presents
our integrated Medical Cyber-Physical System based on the
models. Evaluation on real world clinical cases is given in
Section IV and we conclude the paper in Section V.

II. RELATED WORK

Background of PSH Paroxysmal sympathetic hyperactiv-
ity is a syndrome where transient nervous system activity



occurs manifested with simultaneously increased heart rate,
respiratory rate, blood pressure, body temperature and other
clinical features, such as severe sweating, posturing and so
on. To detect PSH, physicians have proposed many clinical
diagnostic criteria sets [21]. Through the systematic liter-
ature review, there is a strong agreement on simultaneous
and paroxysmal feature. However, some inconsistencies are
illustrated as below. Episode duration and frequency: In [4],
episodes need to persist for more than two weeks, but more
than 1 daily episode for at least 3 days in [19]. Clinical
feature composition and severity: Some features like heart
rate, sweating are commonly used, but some vary between
criteria sets, like pupillary dilation and muscle tone. However,
severity for the same feature may be distinct, like 38.5◦C of
body temperature in [19] , 39◦C in [4] and undefined in [12],
respectively.

PSH Detection: Currently, detection of PSH is by manual
checks by diagnostic criteria presented in literature or modified
according to clinical experience [9]. To our best knowledge,
the only “tool” applied to detection of PSH is PSH-AM, which
is composed of two components: Diagnosis Likelihood Tool
addressing the probability and Clinical Feature Scale assessing
the severity to estimate the diagnostic likelihood of PSH [22].
In contrast to our work, it is not a runnable tool and the authors
envisage that PSH-AM would be completed daily by medical
staff at a standardized time.

Medical CPS: With the proliferation of measuring devices,
researchers have been paying attention to Medical CPS to
provide continuous high-quality care for patients [17]. One
of the main applications focuses on anomaly detection [6],
[15], [16]. In contrast to these existing approaches, there are
no existing pathophysiologic models or medical guidelines to
apply runtime verification technique like [15], [16] and not
enough data with accurate event annotations to train data-
driven models like [6]. Therefore, we propose a different
strategy, involving physicians to customize the formal mod-
els and the constraints to perform manual checks for early
detection of PSH.

III. APPROACH

In this section, we present our approach for early detection
of PSH. First, we introduce our formal models. Then, the
integrated Medical CPS is described.

A. Formal Diagnostic Criteria Model

In this subsection, we introduce the formal diagnostic crite-
ria model to describe the current widely used clinical criteria
sets.

a) Model Formalization: As discussed in Section II,
clinical criteria consist of a group of clinical features with
thresholds to confirm an episode, and duration and frequency
of the episodes to confirm a diagnosis. However, each of
them may differ between criteria sets. Therefore, we propose
a formal diagnostic criteria model to describe them uniformly.
Our formal model is specified as an extended automata and
the definition is a tuple M = 〈S, s0, sf , E, C,G, T 〉, where:

- S is a set of states: S = {s1,1, s1,2, . . . , si,j} ∪ {s0, sf},
where si,j is a state corresponding to the episode con-
dition of a patient, indicating the occurrence of the j-th
episode in the i-th day.

- s0 is the initial state where a model starts, also labeled
as s0,0.

- sf is the final state where a model reaches indicating PSH
confirmed, also labeld as smax,0.

- E is a set of events: E = {e1, e2, . . . , en}, where ei is
an event to trigger a transition. In each event, there is
a set of vital signs of a patient labeled as e.vs with a
timestamp of these vital signs labeled as e.tt.

- C is a tuple of criteria variables: C = 〈d, F, ξ〉, where
d is the least episode duration to make a diagnosis; F
is an array of frequencies, where fi is the least episode
frequency of the i-th day; ξ is a predicate to describe the
occurrence of an episode under a given event.

- G is a set of guards: G = {g(s0,s1,1), . . . , g(sd,f ,sf )},
where g(si,j ,sm,n) is a Boolen expression defined in Equa-
tion 1 on an event e to guard the transition between two
states labeled as si,j and sm,n. A guard is composed of
three predicates referring to episode occurrence constraint
as C.ξ, episode frequency constraint as fre and episode
duration constraint dur, respectively. We set g(s0,s1,1) as
True to initialize our model.

- T is a set of transitions: T = {t1, t2, . . . , tn}, where ti
is the transition between two states triggered by an event
e and guarded by a guard g, as ti ∈ S × E ×G× S.

g(si,j ,sm,n)(e) =C.ξ(e.vs)

∧ fre(si,j ,sm,n)(e) ∧ dur(si,j ,sm,n)(e) (1)

fre(si,j ,sm,n)(e) =

{
True , if P1 ∨ P2 ∨ P3

2

False, otherwise.
(2)

dur(si,j ,sm,n)(e) =

{
True , if P1 ∨ P4 ∨ P5

3

False, otherwise.
(3)



P1 =(i == C.d) ∨ (j == C.fd)

∨ (m == max) ∨ (n == 0), 4

P2 =(i == m) ∨ (j == n− 1),

P3 =(i == m− 1) ∨ (j == C.fi) ∨ (n == 1),

P4 =(i == e.tt) ∨ (j == n− 1) ∨ (m == e.tt),

P5 =(i == e.tt) ∨ (j == C.fi)

∨ (m == i+ 1) ∨ (n == 1).

(4)

In our formal model, criteria variables tuple C is configured
by a physician to describe the medical constraints to make
diagnoses. Thus, when the pathophysiology develops, our
model can easily be extended by modifying the predicate ξ.
And other elements can be generated and computed from C
automatically. We label the initial state s0 as s0,0 and the

2P are predicates on i, j,m, n defined in Equation 4
3P are predicates on i, j,m, n defined in Equation 4
4max is used to label the sf state. In practice, we assign max = C.d+1



final state sf as smax,0 for a unified equation to calculate
the guards. In Equation 4, P1 constrains the transition to the
final state sf . P2 and P4 cooperate to constrain the transitions
between states in the same day, and P3 and P5 for the
transitions between two continuous days. We will describe the
semantics for these predicates in the Model Semantics part.

b) Model Semantics: The execution semantics of our for-
mal diagnostic criteria model can be considered as a labelled
transition system [23]. The model starts from the initial state
to monitor a patient under a series of events recording the
patient vital signs lasting criteria-duration days. When a state
transits to another, it implies that an episode occurs and parts
of episode duration and frequency constraints are satisfied to
make a diagnosis. Finally, if the model reaches the final state, a
diagnosis is confirmed because all the constraints are satisfied.

For the lack of pathophysiology knowledge, it is hard to
create a consensus clinical criteria. One alternative approach
is utilizing multiple clinical criteria sets with a weight vector.
We present our diagnostic computation of combined models in
Algorithm 1. The inputs are a series of events E in which each
event e records patient signs (vs) with a timestamp (tt), a set
of clinical criteria C with the weight vector V and a confirmed
threshold τ . The result is computed by function computation
in statements 1-10. First, formal diagnostic criteria models
is generated by construct in statement 2 as discussed in
Model Construction part. A variable score is initialized to
combine the each criteria diagnostic result in statement 3.
For each formal model, we compute the diagnostic result
under the given events by function check in statement 5 and
update the score according to the weight vector by function
updateScore in statement 6. As different clinical criteria
may propose its specific episode duration, a subset of events
will be extracted to meet the time constraint by Extract in
statement 12. Then, the model and events are used in function
check illustrated in statements 11-22 to make a diagnosis
based on the model semantics. After all the clinical criteria
sets have been computed, we make the final diagnosis result
according to the relationship between score and τ by function
judge in statement 8.

B. Integrated Medical CPS

In this subsection, we will present an integrated Medical
CPS for early detection of PSH. The following part describes
the work-flow of the detector and the implementation of our
system.

a) System Structure and Interactions: As illustrated in
Figure 1, our system consists of three main components:
revised ICE device adapter, model generator and monitoring
detector. Modern hospitals have been equipped with a number
of advanced medical devices to automatically observe patient
vital signs by sensors and display the data on device monitors.
However, few of these devices provide specific diagnostic
analysis functionality. In order to comprehensively utilize these
devices, a medical devise adapter is revised on Integrated
Clinical Environment(ICE) to extract patient vital signs from
different medical devices. Because some clinical features like

Algorithm 1 Diagnostic computation of combination model

Input: Event set E, clinical criteria sets C, weight vector V
and result threshold τ

Output: Diagnosis D
1: function computation()
2: M ← construct(C)
3: score← initScore()
4: for m ∈M do
5: r tem← check(m,E)
6: score← updateScore(V, r tem)
7: end for
8: D← judge(score, τ )
9: return D

10: end function
11: function check(m,E)
12: for E ← Extract(E,m→ d) do
13: current← initCurrent()
14: for e ∈ E do
15: current← transit(e)
16: if current is m→ sf then
17: return True
18: end if
19: end for
20: end for
21: return False
22: end function

sweating and posturing cannot be monitored automatically,
we allow physicians to customize the manual check alert
constraints with other necessary system properties like data
sampling frequencies in configuration files. Then, model gen-
erator will automatically parse the configurations into the
formal diagnostic criteria models defined in Section III-A to
minimize the impact from PSH definition evolution. With
the formalized models employed, we implement an early
monitoring detector. With all the components integrated, our
Medical CPS will sample the real-time patient data to relieve
medical staff from the heavy burden of monitoring activities
and provide timely decision supports.

b) Implementation: As described above, we implement
our system in Java platform which can be deployed on any
java-capable computers. Currently, we design a medical device
adapter based on the revised Integrated Clinical Environment
for Phillips IntelliVue MP70 to continually get patient vital
signs. We also implement a GUI tool for physicians to generate
clinical criteria and all the diagnostic criteria generated by our
system are stored in a readable file format. The raw data and
computation results are stored for further use.

IV. EVALUATION

In this section, we evaluate the performance of our approach
by patient data extracted from medical publications.

A. Experimental Setup

In our evaluation, we choose two of the most widely used
ones [12], [19] and set weight vector V as [1, 1] and result
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Fig. 1: Components and interactions of our integrated Medical CPS for early detection of PSH

threshold τ as 1 to perform the detection as described in
Algorithm 1, indicating that a patient is conformed if any
of the criteria sets is satisfied. We use patient data extracted
from medical publications illustrated in Table I to evaluate
our approach. References are recommended by physicians.
For references without concrete patient signs and symptoms,
but with statistics distributions and episode descriptions, we
automatically generate data satisfied the constraints. We ensure
that there are more than 3 episodes in each day for 3 days
to meet the episode duration thresholds in the criteria sets.
The composition of patient data is presented in Table I which
consists of 97 PSH cases and 10 non-PSH cases with clinical
features overlapped for false alarm testing.

Our system samples patient data every 30 minutes, because
the duration of each episode is on average 30 minutes which
is reported in [8]. To our best knowledge, there is no runnable
tool to detect PSH up to now. Therefore, we invite volunteers
with medical experience to manually check patient data every
hour5 using the same criteria sets to verify the effectiveness
and efficiency of our system.

B. Results

All the experiment results are presented in Table I. The
first two columns are patient data composition. In the third
and fourth columns, we illustrate the results of our work
and the average results of the current approach performed by
volunteers, respectively. We discuss the the results as follows,

a) Effectiveness: In order to compare our work and
current approach, we use Precision and Recall to compare the
effectiveness. Precision is a ratio between correctly detected
PSH patients and the number of patients assigned as PSH. As
illustrated in Table I, for this evaluation cases set, our precision
is 93/96 (96.88%) compared to 76/78 (97.44%) for manually
checking. Therefore, in terms of the correctness, our approach
performs almost the same as manually checking Namely, we
will not burden medical staff with too many alarms than the
current approach. Recall is a ratio between correctly detected
PSH patients and the number of PSH patients in our case
set. With 97 cases as PSH patients, we successfully detect

5After the discussions with physicians, we learn that the most frequent
manual checking routine in their department is 1 hour. Therefore, we manually
check patient data every hour in our evaluation.

93 of them with a recall as 95.88%, which is better than
manually checking with 76/97 (78.35%). Namely, in terms
of the detection ability, our approach performs better than the
current approach. In the medical domain, human safety is the
first factor. With a reasonable false alarm rate, a higher recall
indicates a better solution.

b) Efficiency: With the same diagnostic criteria, current
detection approach underdiagnosed 17 cases (17.53%) in all
PSH cases than us, which indicates that our approach can
perform better in terms of early detection of PSH. In an effort
to understand the primary reason, we illustrate the patient data
for the first 3 hours in a case from [18]. We note that heart rate
(HR), respiration rate (RR) and blood pressure (BP) crossed
the threshold at 1.5 hours and 1 hour, respectively. However,
it is unreasonable for medical staff to observe every patient
every 30 minutes. Thus, the volunteers missed the syndromes,
precisely high HR and RR, resulting in an underdiagnosis.
We successfully detected this episode because our system
combined the data in the near 30 minutes. From another
perspective, we calculate the average detection time of true
positive groups respectively. The result shows that manual
checks have an average 4.5 hours delay than our system.
Along with the paroxysm and complex clinical features, we
believe the real world situation is worse. Additionally, during
the manual checks process, a volunteer mixed up two criteria
sets resulting in under-recognition of a case. Therefore, our
approach provides a benefit of steady performance and detects
anomalies earlier.

c) False Alarms: In all the cases, we have 3 false posi-
tives and 4 false negatives. After reviewing the cases manually,
we note that for all the false positives, they have crossed
the PSH criteria, but belong to other diseases. Therefore, the
reason for false positives is there are many overlapped clinical
features between PSH and Sepsis, resulting in misdiagnoses.
It is the future work of us to provide a relevant analysis
component to show the possibilities faced with the same
clinical features. For the 4 false negatives, we note that all
of them are lack of enough vital signs to meet the criteria,
which are important to do the computation. These cases are
also missed by manual checks. To detect these cases, we can
decrease the thresholds of each vital signs. However, it will
disturb physicians with many false positives. In the future, we



TABLE I: Detection results on cases from medical publications

Publication Cases PSHMonitor Manually
PSH N-PSH Total TP TN FP FN TP TN FP FN

Lee [18] 2 0 2 2 0 0 0 1 0 0 1
Hughes [14] 44 0 44 44 0 0 0 37 0 0 7
Baguley [3] 15 0 15 14 0 0 1 13 0 0 2

Blackman [5] 20 0 20 20 0 0 0 16 0 0 4
Deepika [9] 4 0 4 3 0 0 1 1 0 0 3

Lv [19] 6 0 6 6 0 0 0 4 0 0 2
Baguley [2] 6 0 6 4 0 0 2 4 0 0 2

Umbriaco [24] 0 5 5 0 4 1 0 0 4 1 0
Martin [20] 0 5 5 0 3 2 0 0 4 1 0
Summary 97 10 107 93 7 3 4 76 8 2 21

PSH is for patient confirmed as PSH and N-PSH is used for other cases like Sepsis and Malignant
hyperthermia. TP is true positive for PSH cases detected as PSH. TN is true negative for N-PSH cases
detected as N-PSH. FP is N-PSH cases misdiagnosed as PSH and FN is PSH cases underdiagnosed .

will carry out more experiments to balance this issue.

V. CONCLUSION

In this paper, we presented an integrated Medical Cyber-
Physical System for early detection of paroxysmal sympathetic
hyperactivity. We proposed a formal diagnostic criteria model
to describe diverse widely used clinical criteria. With the
models employed, we implemented an early detector and
integrated it into a Medical CPS to monitor patient vital signs
and help physicians make diagnoses. The evaluation on cases
from medical publications shows the effectiveness and the
efficiency of our approach. In the future, we will evaluate on
real-world patient data in hospitals to strengthen our work.
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