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Abstract—Today, large and complex software is developed with
integrated components using application programming interfaces
(APIs). Correct usage of APIs in practice presents a challenge due
to implicit constraints, such as call conditions or call orders. API
misuse, i.e., violation of these constraints, is a well-known source
of bugs, some of which can cause serious security vulnerabilities.
Although researchers have developed many API-misuse detectors
over the last two decades, recent studies show that API misuses
are still prevalent.

In this paper, we provide a comprehensive empirical study on
API-misuse bugs in open-source C programs. To understand the
nature of API misuses in practice, we analyze 830 API-misuse
bugs from six popular programs across different domains. For
all the studied bugs, we summarize their root causes, fix patterns
and usage statistics. Furthermore, to understand the capabilities
and limitations of state-of-the-art static analysis detectors for
API-misuse detection, we develop APIMU4C, a dataset of API-
misuse bugs in C code based on our empirical study results,
and evaluate three widely-used detectors on it qualitatively and
quantitatively. We share all the findings and present possible
directions towards more powerful API-misuse detectors.

Index Terms—API misuse, empirical study, benchmark, bug
detection

I. INTRODUCTION

Large-scale software is often achieved by the use of frame-
works and libraries, which provide application programming
interfaces (APIs). To correctly use these APIs, program-
mers must conform to their usage constraints, such as call
conditions on parameters or call orders. While high-quality
documentation of an API’s usage constraints could help to
guide correct usages, it is often insufficient, at least in its
current form to solve the problem [1]. Violation of such usage
constraints, called API misuse [2], is a prevalent cause of
software bugs, crashes, and vulnerabilities [3], [4]. For exam-
ple, missing parameter validation of PKCS7_dataInit()
of OpenSSL in CVE-2015-02891, allows remote attackers
to cause a denial of service by maliciously crafted data. It
affected more than 33 released versions of OpenSSL and
threatened almost all Linux distributions.2

Over the last two decades, numerous tools, techniques, and
methodologies have been proposed to address the problem of
API misuse. For example, some methods have been developed
to recommend correct usage of API parameters [5] and calling
locations [6] to prevent misuses. And others aim at finding
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API misuses through code review [7], runtime verification [8]
and static analysis [9]. However, recent studies show that API
misuses remain widespread [10], [11]. Particularly, a recent
study on 11748 Android applications on Google Play mar-
ketplace shows that 10327, overall 88%, misused at least one
cryptography-related API [12]. Moreover, these bugs are even
in source code written by experienced developers [13] and bug
fix patches. For example, a developer of OpenSSL created a
patch ( sha:1c4221) to “fix memory leak in crl2pkcs7 app”,
but he forgot to consider all branches, resulting in a double
free problem in one branch. Later, a commit (sha:d285b5) was
patched to “avoid a double-free in crl2pl7”.

To better combat API-misuse bugs in practice, our com-
munity urgently needs a thorough understanding of the char-
acteristics of API-misuse bugs as well as current limitations
of existing approaches to API-misuse detection. Particularly,
we focus on API misuses in open-source C programs and free
static analysis detectors. Static analysis detectors have become
an essential pillar of modern software quality assurance ap-
proaches, since they only require access to source code [14],
typically available early in the development process. It leads
to cost savings as the earlier a bug is detected, the cheaper it is
to fix [15]. Therefore, this paper aims to address the following
research questions:

• RQ1 (API-Misuse Characteristic): What are the char-
acteristics of API-misuse bugs? While existing studies
have proposed several software defect classifications [9],
[16], [17], they give no insights into the root causes and
fix patterns specific to API-misuse bugs in real-world
C programs. Understanding the nature of API-misuse
bugs is essential for deriving guidance towards better API
design as well as more powerful bug detectors.

• RQ2 (Detection Capability): What kind of API-misuse
bugs can(not) the state-of-the-art static analysis detectors
find? To advance the state-of-the-art in API-misuse de-
tection, we need to understand how existing approaches
compare to each other, and what their limitations are. The
results would help researchers to improve API-misuse
detectors by enhancing current strengths and proposing
new approaches to overcome weakness.

In this work3, we conduct an empirical study on API-
misuse bugs to answer these research questions. For RQ1, we

3We publish all the original data and artifacts in a temporary repository for
double-blind review process at: https://github.com/imchecker/compsac19



analyze 830 API-misuse bugs from six popular open-source
C programs across different domains (including operating
systems, libraries, and applications) to understand the true
nature of API-misuse bugs in real-world C programs. We
thoroughly study each of these bugs to summarize the root
causes and fix patterns. Furthermore, to assess API-misuse
detection capabilities of static analysis detectors, we develop
APIMU4C, a dataset of API-misuse bugs in C code based
on the summarized root causes. APIMU4C consists of 2172
test cases modified from two widely-used benchmarks (i.e.,
Juliet Test Suite [18] and ITC [19]) and 100 cases from
three real-world programs (OpenSSL [20], Curl [21] and
Httpd [22]). Using APIMU4C, we compare three widely-used
static analysis detectors which support multiple types of API-
misuse bugs, qualitatively and quantitatively.

Through our in-depth analysis of the above research ques-
tions, we obtain many interesting findings. We summarize our
main findings as follows:

• API-misuse bugs are not corner-cases (17.05% of bug-
fix related commits). Even though the distribution of root
causes is different among programs, there are mainly
three generic types of patterns, i.e., improper parameter
using (IPU, 16.27%), improper error handling (IEH,
30.96%) and improper causal function calling (ICC,
36.02%). These bug patterns can motivate new specific-
purpose approaches to detect API-misuse bugs.

• Almost all (96.15%) API-misuse bugs can be fixed within
10 lines, such as adding sanity checks of parameters,
correctly validating error code status, and adding missing
function calls. However, it may require control-flow, data-
flow, and complex project-specific semantics to fix these
bugs correctly. It indicates that new approaches are in
great need to help developers understand the context
of API-misuse bugs, and to provide automatic repair
suggestions.

• For the misused APIs, 21.45% of them have been incor-
rectly used more than once in its corresponding program,
i.e., at least two commits to fix misuses of an API with the
same pattern in different program locations. It indicates
that an API misuse tracking system may be required
to recommend and remind developers, especially for the
APIs of widely-used third-party libraries.

• Static analysis detectors are capable of detecting API-
misuse bugs, but they perform lower (missing 17-54% test
cases respectively) than the expectations from their tool
descriptions or publications. To improve precision, detec-
tors need to consider more semantics (e.g., path-sensitive
and inter-procedural), instead of simply syntactic check-
ing. To improve recall, static analysis detectors based
on encoded bug patterns could provide a user-friendly
interface to specify usage constraints for project-specific
APIs. For detectors employing mining techniques, they
need to go beyond the naive assumption that a deviation
from the most frequent usage corresponds to a misuse,
because it may lack sufficient data for an individual

program in a realistic setting to infer correct models.
Building probabilistic models or providing interfaces to
analyze multiple programs simultaneously could be a way
to eliminate or reduce insufficient threats.

In summary, we make the following main contributions:

• We present the first comprehensive study of API-misuse
bugs in open-source C programs. Our in-depth analysis
of 830 API-misuse bugs from six large-scale programs
across different domains reveals common root causes of
API misuses.

• We provide APIMU4C, a benchmark for API-misuse
detectors in C programs, which could facilitate systematic
and reproducible evaluation of misuse detectors.

• We perform a qualitative and quantitative comparison of
three existing open-source static detectors with different
analysis strategies on APIMU4C. We manually analyze
the merit and demerit of these detectors and hope our
study can shed new light on combating API-misuse bugs.

The rest of the paper is organized as follows. Section II
introduces the background and terminology of API misuse.
We illustrate the methodology in Section III. All of the results
are presented in Section IV. We discuss the related work in
Section V and conclude in Section VI.

II. BACKGROUND AND TERMINOLOGY

An API usage is a piece of code which aims at invoking a
specific API to accomplish a task. It usually combines basic
program elements to ensure the correct usage, such as check-
ing parameter properties and error status code encapsulated in
return values, and calling function calls. The combination of
these elements is subject to usage constraints or specifications,
which depend on the nature of the API. When a usage violates
one or more such constraints, we call it a misuse.

The automatic detection of API misuses can be approached
by static analysis on source code or dynamic analysis on
runtime logs and traces. In this paper, we focus on static anal-
ysis detectors and call such detectors as API-misuse detectors
(detectors for short). To find API misuses, detectors require
either specifications of correct usage to detect violations or
specifications of incorrect usage to match instances. Such
specifications can be crafted manually by domain experts and
hard-coded into detectors by developers. During the analysis
of the source code, detectors employ different representations
(e.g., abstract syntax tree, control flow graph, self-defined
intermediate representation, etc.) and detection techniques
(e.g., abstract interpretation, string pattern matching, etc.) to
find violations. Since manually maintaining specifications is
costly, there have been many attempts to automatically infer
such specifications. The key idea of these detectors is that
a deviation from the most frequent usage corresponds to a
misuse. In this paper, we will evaluate both of these two kinds
of detectors.



TABLE I: Empirical Study Subjects

Project Loc Studied Total Bug API
Period Fix Misuse

Linux [23] 12.96M 20170901-20171231 24651 6401 868
OpenSSL [24] 454K 20150701-20171231 7564 2391 529
FFmpeg [25] 915K 20160701-20171231 8162 2783 610

Curl [21] 113K 20130101-20170630 7082 2043 499
FreeRDP [26] 259K 20130701-20171231 7565 3535 495

Httpd [22] 203K 20130701-20171231 6072 1323 149
Total 14.90M - 61096 18476 3150

III. METHODOLOGY

This section introduces our major steps to collect and
analyze API-misuse bugs, and experimental setup to evaluate
existing detectors on API-misuse bugs.

A. Bug Collecting

1) Target Programs: To better understand what kind of
API-misuse bugs occur in real-world C programs and how
developers fix them in practice, we investigate these bugs from
six popular open-source programs as listed in Table I.

These programs represent different domains, including op-
erating systems, widely-used libraries, and applications using
studied libraries. Also, they are under ongoing development,
receiving considerable attention on GitHub and frequently
mentioned in bug detection literature. All six programs have
well-organized and publicly available commits tracing repos-
itories on Github.

2) Collecting API-Misuse Bugs: To collect API-misuse
bugs from these six programs, we extract and analyze version
histories. First, we begin with retrieving all commits with
commit messages, patch files and other meta information
within the studied period for each program. We remove the
commits without modification to *.c files. We randomly chose
600 commits (100 for each program) to summarize bug-fix
related keywords (e.g., “bug”, “error”, “fix”, and “check”, etc.)
and API-misuse related keywords (e.g., “fix API”, “missing
check”, “null pointer dereference”, “memory leak”, “return
value”, etc.) in commit messages. Then, we collect bug-fix
related commits and further search for API-misuse related ones
by approximate string matching with keywords. For example,
we identified a Linux kernel commit (sha: 059c98599) with
the commit message “add checks on wl18xx top reg write()
return value” as a target commit.

We randomly chose 180 commits (30 from each program)
that were marked as API-misuse related commits to evaluate
the precision of the above approach. By manually verifying
the commit messages and their corresponding patches, 166
(92.22%) of 180 are API-misuse related. In all wrongly
extracted commits, although the relevant keywords are present,
they were not related to API-misuse bugs. For example, one
commit of OpenSSL (sha: 4af389) with commit message “Fix
compilation with OPENSSL API COMPAT=XXX” was patched
to fix a compilation bug.

Totally, we extract 3150 API-misuse related patches from
18476 bug-fix related commits as shown in Table I.

B. Analyzing API-Misuse Bugs

To answer our research questions, we perform an in-depth
analysis of these API-misuse bugs according to commit mes-
sages, patches, source code, and documentation. Note that
manually understanding a bug without context semantics and
project-specific domain knowledge requires a mass of time
and efforts. Therefore, we randomly investigated 830 true
API-misuse bugs (see Table III in Section IV-A1). For each
bug, we endeavour to understand the misuse context, assign
them into different categories according to the root causes,
and summarize fix patterns. In addition, we calculate the
statistics of these misused APIs. Through analyzing these 830
bugs, we obtain many interesting findings (see Section IV-A).
We further employ these findings to guide the evaluation of
existing detectors.

TABLE II: Combination of APIMU4C

Location # of Cases Type Loc
Single file 2172 manual craft 100∼200
OpenSSL 50 real-world patch 454K

Curl 30 real-world patch 113K
Httpd 20 real-world patch 203K

Summary 2272 Covering all the summarized root causes

C. Detector Evaluation Setup

To advance state-of-the-art API-misuse detection, we need
to understand the capabilities and shortcomings of existing
detectors.

1) Dataset and Metrics: To the best of our knowledge,
there is no existing benchmark towards API misuses for C
code. In this paper, we create APIMU4C, a dataset of API
misuses that can be used to benchmark and compare API-
misuse detectors according to the root causes of our empirical
study on API-misuse bugs. APIMU4C consists of two parts
as listed in Table II: (1) 2172 manually crafted cases modified
from two widely-used benchmarks (i.e., Juliet Test Suite [18]
and Toyota ITC [19]). Each of these cases includes a main
function invoking one bad caller with one misuse and several
good callers with correct usages within small pieces of code.
They are designed to capture the essence of bugs occurring in
real-world code, and covering syntax structures of C language
as many as possible. It will be useful to understand the analysis
strategy and supported language features of detectors. (2) 100
real-world cases injected into three open-source projects (i.e.,
OpenSSL, Curl, and Httpd) according to their bug-fix patches.
It will be useful to evaluate the detectors’ capabilities on real-
world programs.

We employ three metrics to compare the existing static
analysis detectors on APIMU4C:

• Conceptual-Recall(CR): CR is the upper bound of recall
for a detector, i.e., the conceptual capability of a subject
detector calculated offline, where we assume that the
detector always can find the bugs.

• Recall = # of API misuses in reports
# of all API misuses : It is important for de-

velopers to know the detection capabilities of existing
tools to choose adequate tools, as well as for researchers



to direct future work. An ideal detector should have an
empirical recall upper bound equal to its conceptual recall
upper bound.

• Precision(P ) = # of API misuses in reports
# of reports : Past studies show

that developers rarely use analysis tools that produce
many false positives [27]. Therefore, for a detector to
be adopted in practice, it needs a high precision.

2) Subject Detectors: In this study, we focus on static de-
tectors supporting API-misuse detection of C code. We contact
authors of related publications and search free tools online.
Currently, we select three widely-used tools with different
detection techniques and strategies. All of the three tools
provide a user-friendly client with well-format bug reports and
support multiple types of API misuses. Also, they achieve
a stable performance in the preliminary experiment and are
capable of detecting bugs in real-world programs.

• APISan Master Branch at 2018-06-01 [28]: is an aca-
demic tool designed for API-misuse bug detection, which
combines code mining with static analysis techniques. It
extracts likely correct usage patterns intra-procedurally by
considering semantic constraints, including implications
of function return values, relations between function
arguments, causal relationships between functions, and
implicit pre- and post-conditions of functions.

• Cppcheck Version 1.83 [29]: is an open-source tool to
find undefined behavior and dangerous coding constructs.
It works by splitting source code into tokens and finding
suspicious patterns in the tokens with flow-, context-
sensitive analysis inter-procedurally. Beyond the core of
static analysis engine, Cppcheck also provides interfaces
to write rules for project-specific APIs. Therefore, we
manually create these rules for APIMU4C.4

• Clang-SA Version RELEASE 600: is an open-source tool
of LLVM5. It employs symbolic execution to reason about
the semantics with flow-, context-sensitive analysis inter-
procedurally. It provides a number of checkers to support
different kinds of API-misuse bugs.6

D. Threats to Validity

We select API-misuse bugs from six open-source programs
for a given period. So it does not cover all types of programs,
and the bugs and patches beyond the studied period are not
included. We employ keywords to extract target bug patches.
However, developers may not put the keywords that we look
for in the commit messages. Nonetheless, these six programs
are widely-used, covering a diverse set of domains, and totally
830 commits within a five-year period have been studied. We
conduct a preliminary experiment to find keywords on 600
bug-fix related patches across all six programs. This makes
it unlikely that we miss a prevalent category of API misuse.
Our manual understanding may be affected by authors’ biases.
For each bug, we carefully study its description, patches and

4http://cppcheck.sourceforge.net/manual.pdf
5https://llvm.org/
6http://clang-analyzer.llvm.org/available checks.html

discussions among developers, and read source code to have
a deep understanding. All studied bugs have been discussed
and confirmed by at least two authors in this paper. Thus, we
believe that all studied bugs are true positives and have been
thoroughly studied.

Our study focuses on static detectors for C code. Ap-
proaches based on other techniques and another language may
perform differently and have unique strengths and weaknesses.
Performance of a detector depends on its configuration. Due
to the high effort of reviewing findings, we could not try
each combination. To give a fair chance for each detector, we
selected the optimal configurations reported in the respective
publications and employed all the diverse checkers supported
by the tools. We evaluate on APIMU4C, which may not have
enough examples to cover all kinds of API misuses with full
syntax structures of C language. We publish all the original
data, APIMU4C, tools’ results to encourage researchers and
developers to extend our experiments as well as to design more
powerful approaches to combat API misuses.

IV. RESULTS

A. API Misuse Characteristics

We totally extracted 3150 (17.05% on average) API-misuse
related commits from 18476 bug-fix related commits in six
open-source programs as shown in Table I. As discussed
in Section III-A2, our approach achieves an approximate
precision of 92.22% by manually verifying a group of sample
instances. Therefore, we believe that API misuses are not
corner-case, but prevalent (considering that many misuses are
still hiding in source code).

Finding 1: API-misuse bugs are not corner-case in source
code. Approximately, 17.05% of bug-fix related commits
are patched for API misuses.

To understand the true nature of API-misuse bugs, we
randomly investigated 830 instances as listed in Table III. We
summarize characteristics of these misuses, including the root
causes, fix pattern and usage statistics.

1) Root Causes: Even though the distribution of root
causes is different across programs, we identify three generic
categories of API-misuse, improper parameter using (IPU),
improper error handling (IEH) and improper causal function
calling (ICC), as listed in Table III. We used the code snippets
from bug-fix patches to discuss the details of these categories
below.

Improper Parameter Using (IPU): APIs simplify program-
ming by abstracting underlying implementation details for a
specific target. Certain conditions must hold whenever an API
is invoked, which are called preconditions [30]. For example,
when an argument in method calls is a pointer type, it usually
has to be ensured that the pointer is not NULL. However,
we find that developers often forget to guarantee this type of
constraints. For example, function strchr(str, c) searches for
the first occurrence of the character c (an unsigned char) in
the string pointed to by the argument str. Without validating



TABLE III: Investigated API-misuse Bugs and Patches

Project # of API Misuse Investigated IPU IEH ICC Other
Bug Fix # of Rate1 # of Rate2 # of Rate3 # of Rate3 # of Rate3 # of Rate3

Linux 6401 868 13.56% 283 32.60% 43 15.19% 96 33.92% 77 27.21% 67 23.67%
OpenSSL 2391 529 22.12% 127 24.00% 21 16.54% 42 33.07% 49 38.58% 15 11.81%
FFmpeg 2783 610 21.92% 126 20.66% 18 14.29% 43 34.13% 52 41.27% 13 10.32%

Curl 2043 499 24.42% 134 26.85% 23 17.16% 38 28.36% 57 42.54% 16 11.94%
FreeRDP 3535 495 14.00% 119 24.04% 22 18.49% 30 25.21% 48 40.34% 19 15.97%

Httpd 1323 149 11.26% 41 27.52% 8 19.51% 8 19.51% 16 39.02% 9 21.95%
Total 18476 3150 17.05% 830 26.35% 135 (16.27%) 257 (30.96%) 299 (36.02%) 139 (16.75%)

Rate1= # of API-misuse commits / # of bug-fix commits, Rate2= # of investigated commits / # of API-misuse commits
Rate3= # of each category / # of investigated commits for each project

1 FreeRDP: libfreerdp/core/gateway/http.c
2 CommitID: 9e5be6f7e8*33d68012f6
3 Log: Fixed API nonnull warning.
4 void OPENSSL_config(const char *config_name){
5 ...
6 // missing parameter validation
7 - colon_pos = strchr(line, ’:’);
8 + if (line)
9 + colon_pos = strchr(line, ’:’);

10 + else
11 + colon_pos = NULL;
12 ...

(a) Single parameter validation.

1 FFmpeg: libavcodec/libxvid_rc.c
2 CommitID: f7d183f084*a12670ed0e
3 Log: Check return value of write() call
4 ...
5 // missing valiation between parameter and return value
6 - write(fd, tmp, strlen(tmp));
7 + if (strlen(tmp) > write(fd, tmp, strlen(tmp))) {
8 + av_log(s, AV_LOG_ERROR, "MSG");
9 + return AVERROR(EIO);}

10 ...

(b) Parameter validation with inter-relation of return value.

Fig. 1: Examples of IPU bugs and fix patches.

the argument line at Line 7 in Figure 1a, it may result in a
null pointer dereference bug.

Relations among arguments should be taken into considera-
tion in the meantime. Typical examples are memory operation
APIs, such as memcpy(d, s, n), where the size of destination
buffer d should be equal to or larger than the copy length n. In
addition, a parameter may also be semantically inter-related to
the return value. For example, function size t write(int fd,
void* buf, size t cnt) writes cnt bytes from buf to the file or
socket associated with fd. The return number ret of write()
records how many bytes are actually written, indicating that
ret has to be checked with cnt to ensure the success of the
written operation as shown in Figure 1b.

Finding 2: In the investigated API-misuse bugs, 14.29-
19.51% are caused by improper parameter using (IPU),
including missing validation of a single parameter, inter-
relations among parameters as well as the return value.

Improper Error Handling (IEH): Secure and reliable soft-
ware should handle all possible failure conditions correctly.
Unfortunately, C does not provide any error handling primi-
tives. Developers usually employ certain values conventionally

1 Curl: ib/ldap.c
2 CommitID: 086ad79970*6acdc9d2da
3 Log: check Curl_client_write() return codes
4 ...
5 - Curl_client_write(p1, p2, p3, 4);
6 ...
7 + result = Curl_client_write(p1, p2, p3, 4);
8 + if(result)
9 + goto quit;

10 ...

(a) Missing error status code checking.

1 Curl: lib/ssluse.c
2 CommitID: 520833cbe1*c894e7ee63e
3 Log: SSL_read() returning 0 is an error too
4 ...
5 nread = (ssize_t)SSL_read(p1, buf, buffsize);
6 // incorrect checking error code status
7 - if(nread < 0) {
8 + if(nread <= 0) {
9 ...

(b) Incorrect checking of error status code.

1 Curl: lib/hostip.c
2 CommitID: eb5199317e*0ca7f7aa1e
3 Log: add error message when resolving using SIGALRM
4 ...
5 - if(timeout < 1000)
6 + if(timeout < 1000) {
7 // output error message and propagate error status
8 + failf(data, ERROR_MSG, timeout);
9 return CURLRESOLV_TIMEDOUT;

10 ...
11 Openssl: ssl/t1_lib.c
12 CommitID: 884a790e17*8c1fe18902
13 Log: Fix missing NULL checks in key_share processing
14 ...
15 skey = ssl_generate_pkey(ckey);
16 + if (skey == NULL) {
17 + SSLerr(SSL_F_ADD_CLIENT_KEY_SHARE_EXT,

ERR_R_MALLOC_FAILURE);
18 + return 0;
19 + }

(c) Error handling actions when an API fails.

Fig. 2: Examples of IEH bugs and fix patches.

to represent the execution status, especially for large-scale sys-
tems [31]. Thus, after calling the target function f , the caller
c should check its return value properly before proceeding.
However, we find that developers often forget to check the API
return values. Figure 2a shows such an example from Curl.
Function Curl_client_write() sends data to the write
callbacks, where the return value records a predefined error
status code. The caller function did not check whether the API



1 Openssl: crypto/objects/o_names.c
2 CommitID: 0a618df059*8bc1eeff07
3 Log: Fix a mem leak on an error path
4 ...
5 onp = OPENSSL_malloc(sizeof(*onp));
6 if (onp == NULL) {
7 /* ERROR */ return 0;
8 }
9 ... // processing

10 if (lh_OBJ_NAME_error(names_lh)) {
11 + OPENSSL_free(onp);
12 return 0;
13 ....

(a) Missing resource release.

1 Openssl: apps/crl2p7.c
2 CommitID: d285b5418e*e61bdd1a50
3 Log: Avoid a double-free in crl2pl7
4 ...
5 if ((certflst == NULL) && (certflst =
6 sk_OPENSSL_STRING_new_null()) == NULL)
7 goto end;
8 - if (!sk_OPENSSL_STRING_push(certflst, opt_arg())) {
9 - sk_OPENSSL_STRING_free(certflst);

10 + if (!sk_OPENSSL_STRING_push(certflst, opt_arg()))
11 goto end;
12 ...
13 end:
14 sk_OPENSSL_STRING_free(certflst);
15 ...

(b) A double free bug.

Fig. 3: Examples of ICC bugs and fix patches.

returns an error code, which caused an improper error handling
bug. However, properly checking the return values is not trivial
in reality, since each API uses return values differently. As
shown in Figure 2b, the caller of SSL_read() checked the
return value against a negative error code. However, returning
zero is also an error according to the OpenSSL specification.7

To correctly handle the API failures, developers usually
employ two common actions in our empirical study as shown
in Figure 2c: (1) Propagate error status upstream using
an appropriate return value to inform the rest of the sys-
tem about this failure. For instance, Curl returns CURLRE-
SOLV TIMEDOUT to indicate a previous alarm expired. (2)
Log/output an appropriate error message so that the users be-
come aware of the failure, such as calling failf() to output
the messages stating why Curl fails, and calling SSLerr()
in OpenSSL.

Finding 3: In the investigated API-misuse bugs, 19.51-
34.13% are caused by improper error handling (IEH),
including missing/incorrect checking error code status
and missing/incorrect error handling actions.

Improper Causal Function Calling (ICC): Causal relation-
ships, also known as the a-b pattern, are common in API usage,
such as lock/unlock and malloc/free. Missing the second func-
tion call will result in a resource leak error. For example, func-
tion OPENSSL_malloc() of OpenSSL behaves similarly to
malloc() to allocate system resources. In Figure 3a, it forgot
to OPENSSL_free() the onp along the error handling path

7https://www.openssl.org/docs/manmaster/man3/SSL read.html

at Line-11 when function lh_OBJ_NAME_error() fails,
resulting in a memory leak bug.

Currently, many tools focus on finding these “direct” causal
relationships, that is, no context constraint between two API
calls. However, there are many constrained causal relationships
in practice. For example, the non-NULL return value of
malloc() requires a call to function free() to release the
memory. Moreover, resource release action should semanti-
cally match the allocation. Specifically, releasing one resource
multiple times without reallocation will result in a double free
bug as shown in Figure 3b.

Finding 4: In the investigated API-misuse bugs, 27.21-
42.54% are caused by improper causal function calling
(ICC), including missing resources release and redundant
calling.

Others: A total of 139 patches occur due to project-specific
issues which cannot be directly applied to generic API usages.
For example, some patches are created to update function
definitions (e.g., Curl-82232bbbaf and FreeRDP-1bca1e7820).
Another motivation is to refine error handling mechanism
(e.g., Httpd-b5eae6a3e2), such as changing logging functions
(e.g., Linux-5b60fc0980) and error messages (e.g., OpenSSL-
0cb8c9d85e). Others arise to fix typos (e.g., Curl-27ac643455),
or other functionalities (e.g., FFmpeg-2dafbae994 to deprecate
old APIs and Curl-4dae049157 to remove compilation warn-
ings).

2) Bug Fixing: For each investigated API-misuse bug, we
study how developers fix it and how difficult to fix it. We
discuss the findings in the following part.

Fix Strategies. Fixes of API-misuse bugs are highly related
to their root causes and project-specific specifications as illus-
trated in Figure 1-3. For misuses caused by IPU, a simple fix
is to add parameter validation before the function call. For IEH
bugs, developers perform sanity check against the error status
code. If the error is detected, error handling actions should be
performed according to project-specific specifications. For ICC
bugs, developers should correctly release the resource after its
lifecycle, especially along the error handling paths as shown
in Figure 3a.

Fix Complexity. Table IV shows the Loc of patches for
the studied API-misuse bugs. More than half (79.40%) of
the misuses can be fixed within 5 lines and a majority

TABLE IV: Patch lines of studied API-misuse bugs

Project bugs Loc of patchsα
1-5 6-10 10+ Avg Med Max

Linux 283 225 47 11 3.88 4 14
OpenSSL 127 108 17 2 3.07 2 13
FFmpeg 126 95 26 5 4.01 3 21

Curl 134 98 26 10 4.65 3 21
FreeRDP 119 103 14 2 2.63 2 11

Httpd 41 30 9 2 4.04 3 11

Summary 830 659 139 32 3.73 3 21(79.40%) (16.75%) (3.85%)
α :We count the lines starting with +/- (i.e., modifying a single line will be
counted twice). For the patch fixing several calls, we use the average Loc.



1 Curl: lib/vtls/curl_darwinssl.c
2 CommitID: 0426670f0a*ed522feb7f
3 Log: Check CA certificate in curl_darwinssl.c
4 ...
5 SecCertificateRef cacert =
6 SecCertificateCreateWithData(kCFAllocatorDefault,

certdata);
7 ...
8 + // Check if cacert is valid.
9 + SecKeyRef key;

10 + OSStatus ret = SecCertificateCopyPublicKey(cacert,
&key);

11 + if(ret != noErr) {
12 + CFRelease(cacert);
13 + failf(data, "SSL: invalid CA certificate");
14 + return CURLE_SSL_CACERT;
15 + }
16 + CFRelease(key);
17
18 CFArrayAppendValue(array, cacert);
19 CFRelease(cacert);
20 ....

(a) Add project-specific parameter validation.

1 FreeRDP: client/common/cmdline.c
2 CommitID: 1845c0b590*d7bcfb90cf
3 Log: Fixed possible memory leak.
4 ...
5 layouts = freerdp_keyboard_get_layouts(PR1);
6 ... // processing
7 + free(layouts);
8 layouts = freerdp_keyboard_get_layouts(PR2);
9 ... // processing

10 + free(layouts);
11 layouts = freerdp_keyboard_get_layouts(PR3);
12 ... // processing
13 free(layouts);
14 ...

(b) Fix memory leak with data-flow semantics.

Fig. 4: Examples of patches requiring complex and project-
specific semantics.

(96.15%) of them can be fixed within 10 lines. However,
it may demand great efforts to create correct patches. For
example, instead of simply adding a parameter validation
against a constant integer or NULL, it may require com-
plicated semantic checkings as presented in Figure 4a. In
Curl, SecCertificateCreateWithData() returns a
non-NULL SecCertificateRef even if the buffer holds an
invalid or corrupt certificate. Therefore, it requires to call
SecCertificateCopyPublicKey() to make sure the
return value is a valid certificate. Moreover, data-flow and
context semantics should be taken into considerations during
the bug fixing phase. As shown in Figure 4b, without explicitly
releasing layouts at Line-7 and Line-10, it will cause a memory
leak.

Finding 5: A majority (92.89%) of API-misuse bugs can
be fixed within 10 lines, but bug fixing is complicated
and requires amounts of efforts to understand the context
semantics.

3) Repeatability: During the investigation of API-misuse
bugs, we find that one API may be misused several times,
though designers of the library provide well-format docu-

mentation. For example, BN_CTX_get()8 is used to obtain
temporary BIGNUMs and returns NULL on error. However,
three commits were patched to fix misuses in different files
by two developers. In the investigated API misuses, we find
that 55 different APIs (10 for Linux, 10 for OpenSSL, 14
for FFmpeg, 14 for Curl, 5 for FreeRDP and 2 for Httpd)
have been misused more than once, consisting 178 (21.45%)
of all investigated commits. Particularly, calloc() caused
21 (15.67% of misuses) memory leak bugs in FreeRDP.
Besides, misusing APIs of third-party libraries are common
in applications(e.g., 13 in Curl, 6 in FreeRDP and 3 in Httpd
were misuses of OpenSSL APIs). For example, a commit (sha:
0b5efa57ad) of Curl was created to “Fix certificate load check”
of misuse of SSL_CTX_load_verify_locations() in
OpenSSL.

Finding 6: Even though developers provide well-format
documentation, APIs are still misused in the same pro-
gram. Moreover, part of them (17.23%) may be misused
multiple times.

B. Static Detector Performance

To understand the capabilities and limitations of state-of-
the-arts, we evaluate three typical detectors on APIMU4C.
That is APISan for approaches that automatically infer usage
constraints from source code and report deviations, Cppcheck
and Clang-SA for approaches that hard-code rules and employ
program analysis techniques to reason about semantics. In
addition, Cppcheck provides an interface for users to specify
usage constraints of project-specific APIs. In this section, we
discuss the evaluation results.

Fig. 5: Conceptual recalls of studied static detectors.

1) Conceptual Recall: We use conceptual recall (defined in
Section III-C1) to assess the detection capabilities of subject
detectors, i.e., to measure an upper bound to their recall
under the assumption that they can always find the supported
misuses. By carefully reading the academic publications and
user manuals online of each tool, we provide the conceptual
recalls of each detector with respect to APIMU4C. As shown
in Figure 5, even though all of the three detectors are capable

8https://www.openssl.org/docs/manmaster/man3/BN CTX get.html



of multiple types of API-misuse bugs, none of them can
support all test cases.

Finding 7: Existing static detectors can support multiple
types of API-misuse bugs, but none of them can support
all test cases.

APISan detects API misuses by inferring usage constraints
through semantic cross-checking. However, it fails to consider
11.43% double-free bugs of single-file ICC cases with negative
association pattern like A → ¬B (i.e., when A appears, B
should not appear). Moreover, it requires sufficient data to
learn the correct usage patterns, (i.e., more correct usages
comparing to misuses). Unfortunately, 22% of the cases in
real-world programs cannot satisfy the minimum support value
(i.e., at least three invocations with two correct usages).

Finding 8: APISan fails to support 22% real-world API-
misuse bugs because of insufficient data to learn the
correct usage patterns.

Clang-SA and Cppcheck encode API usage specifications
into individual checkers. Even though Clang-SA provides
diverse checkers, none of them is designed to validate the error
status code, resulting in missing all 612 IEH cases. Project-
specific APIs usually have similar behaviors to C Standard
Library. For example, functions named *_new are usually
designed to allocate resources. Therefore, it needs to release
the resources after its lifecycle. Without interfaces to specify
specifications of these APIs, Clang-SA has a limited capability
in real-world programs and only supports 19% of real-world
cases misusing APIs provided by C Standard Library. By pro-
viding an interface to define project-specific usage constraints
in an XML-format configuration, Cppcheck supports 54%
more bugs compared to Clang-SA as well as itself without
configurations. However, it fails to provide a mechanism to
specify the concrete error status code checking (e.g., return
value of f should be -1 or -2). Moreover, Cppcheck does
not support the context constraints between parameters of
two functions. For example, fNew(p1, p2) → fFree(p2)
indicates that the resource allocated into p2 by fNew() should

be released by fFree().

Finding 9: By providing an interface to specify usage
constraints of project-specific APIs, Cppcheck is capable
of supporting 54% more bugs compared to Clang-SA and
itself without configuration.

2) Precision and Recall: We list all the evaluation results
in Table V, where Bug is the number of misuses in each type
of APIMU4C, Report is the number of reports produced by
each detector and TP is the number of bug reports which
correctly detect the misuses. As shown in Table V, all of the
three detectors miss certain (17-54%) of bugs in APIMU4C
comparing to its conceptual recalls, respectively. In addition,
all the detectors perform better (both precision and recall) on
single-file cases than real-world programs. We investigate the
root causes of each detector and discuss them as follow.

Table V shows that Cppcheck and Clang-SA have a quite
low recall value (17-54% lower than conceptual recall), but
achieves a higher precision value compared to its recall.
Particularly, Cppcheck achieves the best precision of 89.95%
in single-file cases and 86.36% in real-world project cases.
We find that these two tools prefer a conservative strategy,
i.e., they only report the bugs with high confidence to improve
usage experience [32]. Therefore, API misuses with same root
causes in a complex program structure may be ignored.

Finding 10: Static detectors may prefer a conservative
strategy to ensure high precision, which may result in a
quite low recall value.

Similar to many tools based on mining techniques, APISan
searches the program for explicit constraints in if-statements,
function calls or return statements. However, when such con-
straints hide into the context and require semantic reasoning,
APISan fails to learn them. Therefore, APISan fails to detect
all IPU cases (23.48% of single-file cases). Moreover, some
program properties cannot be explicitly represented in C
syntax, such as misuses caused by “cwe590-free of memory
not on the heap” in IPU, where it has to reason the context of

TABLE V: Evaluation results of studied static detectors.

APIMU4C APISan Cppcheck Clang-SA
Case Type Bug Report TP Precision Recall Report TP Precision Recall Report TP Precision Recall

Single-File-Case

IPU 510 0 0 0 0 145 127 87.59% 24.90% 127 105 82.68% 20.59%
IEH 612 446 173 38.79% 28.27% 298 270 90.60% 44.12% 0 0 0 0
ICC 1050 447 435 97.32% 41.43% 373 337 90.35% 32.10% 746 565 75.74% 53.81%
Total 2172 893 608 68.09% 27.99% 816 734 89.95% 33.79% 873 670 76.75% 30.85%

Project-Case

Openssl 50 143 21 14.69% 42% 13 12 92.31% 24% 2 1 50% 2%
Curl 30 10 0 0 0 5 5 100% 16.67% 0 0 0 0

Httpd 20 62 6 9.68% 30% 2 2 100% 10% 1 1 100% 5%
Total 100 215 27 12.56% 27% 22 19 86.36% 19% 3 2 66.67% 2%

Currently, we exclude reports irrelevant to the misused APIs in real-world projects, for it demands plenty of time to verify reports without priori knowledge.



the pointer to find where it points.9

Finding 11: APISan fails to detect improper parameter
using misuses (23.48% of single-file cases), which de-
mand to reason implicit context semantics.

For all of the three detectors, the investigation results show
that a large proportion of false positives and false negatives are
caused by imprecise semantic analysis. (For the conservative
strategy, we fail to count the concrete number.) In details,
it consists of two perspectives: (1) Lack of path-sensitive
semantics. Computing path reachability in static analysis
is necessary. For example, it does not require to free()
resource along the path where malloc() fails to allocate
heap memory. Otherwise, it will produce a false positive. How-
ever, when a program catches an exception in the procedure
after the memory allocation, it needs to take each path into
consideration instead of matching malloc/free invocation
counts. Because it demands to free the memory along each
error handling path. (2) Lack of inter-procedural semantics.
When the API usages cross functions (e.g., malloc() and
free() are called in two callers), lack of inter-procedural
analysis will produce a false positive of memory leak bug. In
addition, APISan relies on static analysis to extract its usage
representations. Imprecisions in these analyses may obscure
relations between patterns and usages. Therefore, APISan fails
to report 51% (78-27) of project cases because of the failure
of correctly extracting usage contexts.

Finding 12: Imprecise semantic analysis (e.g., lack of
path-sensitive and inter-procedural semantics) will pro-
duce a large proportion of false positives and false
negatives.

C. Discussion

Even though developers provide well-format documenta-
tion, API-misuse bugs are prevalent in source code (Finding 1).
Moreover, part of them may be misused several times by dif-
ferent developers (Finding 6). We find that static detectors are
practically capable of detecting many misuses in APIMU4C
(Finding 7). However, they perform lower than the expecta-
tions as described in publications or tool descriptions (Finding
10-12). We summarize the root causes of low precision and
recall of studied detectors in this paper. Therefore, we call
researchers to consider the following observations to advance
the state-of-the-art in API-misuse detection.
Detection: (1) To design a powerful automatic detector, con-
straints of parameters, error handling when the API fails
and causal function calls need be taken into considerations
(Finding 2-4). (2) Tools with mining techniques should go
beyond the assumption that a deviation from the most-frequent
usage corresponds to a misuse, for sufficient data may be hard
to obtain in practice to learn correct usage patterns (Finding 8).
(3) Tools with hard-coded rules can provide interfaces for users
to provide project-specific usage constraints (Finding 9). (4)

9https://cwe.mitre.org/data/definitions/590.html

Instead of the conservative strategy, we speculate that a good
ranking algorithm, retrieving more usages across programs and
using probabilistic models may be helpful (Finding 10). (5)
Detectors need to capture more semantics (e.g., path-sensitive
and inter-procedural) to conduct more precise analyses instead
of simply syntactic checking (Finding 11, 12), which are also
useful to guide the bug-fix phase (Finding 5).
Maintenance (1) An API misuse tracking system may be
useful to recommend and reminder developers while coding,
especially with a similar usage context to guide the develop-
ment (Finding 1). (2) When an API-misuse patch is accepted,
we need an automatic searching engine (e.g., employing code
clone detection techniques [33]) to detect similar bugs which
may conceal in the code base (Finding 6).

V. RELATED WORK

Researchers conduct many empirical studies to understand
API usages from diverse perspectives. Okur et al. [34] ana-
lyzed the usage of parallel libraries to direct the future develop-
ment of these libraries. Nadi et al. [4] find that while develop-
ers think it is difficult to use certain cryptographic algorithms
correctly, they feel surprisingly confident in selecting the right
cryptography concepts. Beyond practice on specific-purpose
APIs, other studies cover the knowledge on natural-language
statements to make developers aware of usage constraints [35],
deprecated APIs after evolution [36], obstacles to learning
usages of APIs [37] and API usages to motivate research of
specification mining [38]. Complementing the prior studies,
we present a comprehensive empirical study on 830 API
misuses from six open-source programs of different domains
to understand the nature of API misuses in C code.

Over the last 20 years, researchers proposed a multitude of
automated bug-detection methods. Particularly, static analysis
tools have become an important approach [12], [39]. To
compare the detection performance of these detectors, several
datasets of software bugs have been crated in the past. Bug-
Bench [40] is a bug-detection benchmark of C programs, con-
sisting of 17 buggy programs from open source repositories,
w.r.t 13 memory-related bugs, concurrent bugs and semantic
bugs. DEFECTS4J [41] consists of 357 source code bugs from
5 real-world open source programs in Java. Amann et al. [2]
present MUBENCH, a dataset of 89 real-world misuses to
benchmark API-misuse detectors in Java. Our study provides
a dataset, named APIMU4C, of API misuses in C code based
on our empirical study results of API-misuse bugs. It consists
fo both single-file cases covering diverse syntax structures of
C and real-world cases. We qualitatively and quantitatively
evaluate three static analysis detectors which employ different
analysis techniques and strategies on APIMU4C to understand
the capabilities and limitations of state-of-the-arts.

VI. CONCLUSION

API misuse is a well-known source of bugs. Despite the
existence of many static detectors over the last two decades,
API misuses are still prevalent. In this paper, we present



an in-depth study of 830 API misuses in six popular open-
source programs from different domains to understand the
nature of API misuse. We create APIMU4C, a dataset of
API-misuse bugs in C code, and evaluate three widely-used
open-source static analysis detectors on it. Our study reveals
many interesting findings. We publish all the original data
and evaluation results, and hope our study can inspire more
researchers to combat API misuses in practice.
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[4] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping through hoops:
why do java developers struggle with cryptography apis?” in ICSE 2016,
Austin, TX, USA, May 14-22, 2016, 2016, pp. 935–946.

[5] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, J. Zhao, and P. Ou,
“Automatic parameter recommendation for practical API usage,” in ICSE
2012, June 2-9, 2012, Zurich, Switzerland, 2012, pp. 826–836.

[6] C. Xu, X. Sun, B. Li, X. Lu, and H. Guo, “MULAPI: improving API
method recommendation with API usage location,” Journal of Systems
and Software, vol. 142, pp. 195–205, 2018.

[7] R. A. B. Jr., “Code reviews enhance software quality,” in Pulling
Together, Proceedings of the 19th International Conference on Software
Engineering, Boston, Massachusetts, USA, May 17-23, 1997., 1997, pp.
570–571.

[8] K. Havelund and G. Rosu, “Runtime verification - 17 years later,” in
RV 2018, Limassol, Cyprus, November 10-13, 2018, Proceedings, 2018,
pp. 3–17.

[9] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the
state of static analysis: A large-scale evaluation in open source software,”
in SANER 2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume 1,
2016, pp. 470–481.

[10] O. Legunsen, W. U. Hassan, X. Xu, G. Rosu, and D. Marinov, “How
good are the specs? a study of the bug-finding effectiveness of existing
java API specifications,” in ASE 2016, Singapore, September 3-7, 2016,
2016, pp. 602–613.

[11] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are
code examples on an online q&a forum reliable?: a study of API misuse
on stack overflow,” in ICSE 2018, Gothenburg, Sweden, May 27 - June
03, 2018, 2018, pp. 886–896.

[12] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications,” in CCS’13,
Berlin, Germany, November 4-8, 2013, 2013, pp. 73–84.

[13] D. S. Oliveira, T. Lin, M. S. Rahman, R. Akefirad, D. Ellis, E. Perez,
R. Bobhate, L. A. DeLong, J. Cappos, Y. Brun, and N. C. Ebner,
“Api blindspots: Why experienced developers write vulnerable code,” in
Proceedings of the USENIX Symposium on Usable Privacy and Security
(SOUPS), Baltimore, MD, USA, August 2018.

[14] N. Nagappan and T. Ball, “Static analysis tools as early indicators of
pre-release defect density,” in ICSE 2005), 15-21 May 2005, St. Louis,
Missouri, USA, 2005, pp. 580–586.

[15] M. Soni, “Defect prevention: reducing costs and enhancing quality,”
iSixSigma. com, vol. 19, 2006.

[16] D. Zubrow, “Ieee standard classification for software anomalies,” IEEE
Computer Society, 2009.

[17] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “A
systematic evaluation of static api-misuse detectors,” IEEE Transactions
on Software Engineering, pp. 1–1 (Early Access), 2018.

[18] “Juliet test suite,” https://samate.nist.gov/SRD/testsuite.php, 2018.
[19] “Static analysis benchmarks from toyota itc.” 2018. [Online]. Available:

https://github.com/regehr/itc-benchmarks
[20] “Openssl: a cryptographic library implementing the transport layer

security (tls) protocols (including sslv3).” https://github.com/openssl/
openssl/releases/tag/OpenSSL 1 1 1-pre8, 2018.

[21] “Curl: a command line tool and library for transferring data with url
syntax.” https://github.com/curl/curl, 2018.

[22] “Httpd: a powerful and flexible http/1.1 compliant web server.” https:
//github.com/apache/httpd, 2018.

[23] “Source code of linux kernel v4.18-rc4.” https://github.com/torvalds/
linux/releases/tag/v4.18-rc4, 2018.

[24] “Openssl: a cryptographic library implementing the transport layer
security (tls) protocols (including sslv3).” https://github.com/openssl/
openssl/releases/tag/OpenSSL 1 1 1-pre8, 2018.

[25] “Ffmpeg: a collection of libraries and tools to process multimedia
content.” https://github.com/FFmpeg/FFmpeg, 2018.

[26] “Freerdp: a free remote desktop protocol library and clients.” https://
github.com/FreeRDP/FreeRDP, 2018.

[27] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in ICSE,
2013, pp. 672–681.

[28] I. Yun, C. Min, X. Si, Y. Jang, T. Kim, and M. Naik, “Apisan: Sanitizing
API usages through semantic cross-checking,” in 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016.,
2016, pp. 363–378.

[29] “Cppcheck,” http://cppcheck.sourceforge.net/, 2018.
[30] H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Rajan, “Mining precon-

ditions of apis in large-scale code corpus,” in (FSE-22), Hong Kong,
China, November 16 - 22, 2014, 2014, pp. 166–177.
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