
Vetting API Usages in C Programs with IMChecker
Zuxing Gu, Jiecheng Wu, Chi Li, Min Zhou, Yu Jiang, Ming Gu, Jiaguang Sun

School of Software, Tsinghua University, Beijing China

Abstract—Libraries offer reusable functionality through ap-
plication programming interfaces (APIs) with usage constraints
such as call conditions and orders. Constraint violations, i.e.,
API misuses, commonly lead to bugs and even security issues.
In this paper, we introduce IMChecker, a constraint-directed
static analysis toolkit to vet API usages in C programs powered
by a domain-specific language (DSL) to specify the API usages.
First, we propose a DSL, which covers most API usage constraint
types and enables straightforward but precise specification by
studying real-world API-misuse bug patches. Then, we design
and implement a static analysis engine to automatically parse
specifications into checking targets, identify potential API misuses
and prune the false positives with rich semantics. We have in-
stantiated IMChecker for C programs with user-friendly graphic
interfaces and evaluated the widely used benchmarks and real-
world projects. The results show that IMChecker outperforms
4.78-36.25% in precision and 40.25-55.21% w.r.t. state-of-the-arts
toolkits. We also found 75 previously unknown bugs in Linux
kernel, OpenSSL and applications of Ubuntu, 61 of which have
been confirmed by the corresponding development communities.
Video: https://youtu.be/YGDxeyOEVIM
Repository: https://github.com/tomgu1991/IMChecker

Index Terms—API Misuse, Static Analysis, Bug Detection

I. INTRODUCTION

Libraries provide application programming interfaces
(APIs) to increase productivity, and these APIs often have
usage constraints such as restrictions on call orders or call
conditions. Violations of these constraints, which are called
API misuses [1], is a prevalent cause of software bugs, crashes,
and vulnerabilities [2]. To understand the nature of API-misuse
bugs that occur in widely used C programs, we conduct an
empirical study of API-misuse bugs and fixes (the details
of our empirical study can be found in our repository). The
results indicate that API misuses commonly occur because of
the following three reasons: incorrect/missing parameter using
(IPU), incorrect/missing error handling (IEH) and incorrec-
t/missing causal calling (ICC). Figure 1 shows an example
of these misuse bugs, where the missing parameter validation
of fopen at Line 5 will result in a null pointer dereference
bug (IPU); returning SUCCESS when fopen fails at Line 10
and incorrectly checking the error code status of fgets at Line
15 will break the error handling mechanism (IEH), whereas
failure to close the opened file handler “pFile” at Line 19 will
cause a memory leak bug (ICC).

Many different tools, techniques and methodologies have
been proposed to address the above problems. In particular, ap-
proaches with code mining and static analysis techniques have
proven to be effective. For example, PR-Miner [3] encodes
usages as the set of all function names and uses the frequent-
itemset mining to find violations with a minimum support of

1 int foo(char *fileName){
2 char buffer[100] = "";
3 FILE *pFile;
4 // 1. missing parameter validation, resulting NPD
5 + if(fileName == NULL) return ERROR;
6 pFile = fopen(fileName, "r");
7 if (pFile == NULL){
8 Log("Error open file");
9 // 2.1 incorrect error propagation

10 - return SUCCESS
11 + return ERROR;}
12 // 2.2 incorrect error code status checking
13 - if (fgets(buffer, 100, pFile) < 0){
14 + if (fgets(buffer, 100, pFile) == NULL){
15 Log("Error read file");
16 // 3. incorrect causal calling, resulting memory_leak
17 + fclose(pFile);
18 return ERROR;}
19 ...
20 fclose(pFile);
21 return SUCCESS; }

Fig. 1: Motivating example of API-misuse bugs.

15 usages of a single API. Ray et al. [4] proposed ErrDoc to
explore the error handling bugs by under-constrained symbolic
execution using specification, and Yun et al. [5] presented
APISan for the causal relation and semantic relation on ar-
guments by semantic cross-checking on intraprocedural paths.

Despite the vast amount of work on API-misuse detection,
these bugs remain widespread in practice [6], [7]. Based on
the performance of the existing detectors, we observe that
there are two main obstacles to efficient API-misuse detection.
Sparse usage problem. Mining techniques leverage the key
idea that correct usages frequently appear in large corpora,
and deviations are bugs with a predefined minimum support to
filter out false positives, e.g., PR-Miner only analyzes usages
over 15. However, a challenge for such a belief is the “sparse
usage problem” [8], where these tools miss the API-misuse
bugs under the usage threshold, which is severe for program-
specific APIs. Insufficient semantic analysis. Most methods
are built on abstract syntax trees, i.e., matching the usage based
on syntactic information with less semantic information, e.g.,
Errdoc only supports error handling with constant integers.
Moreover, they commonly apply an intraprocedural analysis
strategy, e.g., APISan, to address the path-exploration problem
in large-scale source code. These approaches will generate
false positives and false negatives when the usage contains
the point-to relationship or cross-functions (such as malloc
and free in two separate functions).

In this paper, we present IMChecker, which is a constraint-
directed static analysis toolkit to augment the current API-
misuse detection abilities for large-scale C programs. We pro-
pose a domain-specific language, IMSpec, to specify common
API usage constraints that leverage the empirical study result



2. Verified Spec

…

Traces of 
API1

t1 tm

…

Traces of 
API1

t1 tm

2. Trace Collection

…

Traces of 
API1

t1 tm

1. Control Flow Graph

1. Analysis Entry Selection

…

Traces of 
API1

t1

…

Traces of 
API1

tm

3. Bug Detection

…

Traces of 
API1

t1

1. Result Filtering

Preprocessor Static Analysis Engine Result Generator

2. Report Generation

Source Code

Specification

Fig. 2: Framework of IMChecker

of real-world API-misuse bug patterns. Thus, we provide an
explicit API usage pattern to direct bug detection to overcome
the sparse usage problems. Then, we design and implement
IMChecker, a static analysis engine that automatically parses
IMSpec into checking targets and detects API-misuse bugs.
IMChecker uses the under-constrained symbolic execution [9]
to address large-scale programs and performs a soundy [10]
approach, which indicates that our technique is mostly sound
to achieve a higher precision. For potential API misuses,
IMChecker prunes the false positives using rich semantics
and multiple usage instances. We package the IMChecker
static analysis engine with two user-friendly GUI for IMSpec
creation and bug detection result audit as a toolkit, which can
be used in a single command line.

For the evaluation, we conduct our experiments on a widely
used benchmark, Juliet Test Suite1. The results demonstrate
that IMChecker has a better precision and recall, which
improve by 4.78-36.25% and 40.25-55.21% w.r.t. the state-of-
the-arts. We also apply IMChecker to real-world projects such
as Linux kernel, Openssl and 5 packages in Ubuntu, which
use the OpenSSL library. IMChecker detects 75 previously
unknown bugs, 61 of which have been confirmed or fixed by
the corresponding development communities.

II. IMCHECKER DESIGN

A. Framework

As presented in Figure 2, IMChecker consists of three
components. First, the Preprocessor parses the source code
into an extended control flow graph (CFG) and verifies the
API usage specification defined in the IMSpec language. Then,
the Static Analysis Engine uses the CFG and specifications
to select the target analysis entries, collect path traces with
rich semantic and detect API-misuse bugs along the traces.
Finally, the Result Generator filters the bug detection results

1https://samate.nist.gov/SRD/testsuite.php

according to the semantic information and usage statistics and
produces the final bug reports.

Preprocessor. The input of our tool contains two parts:
source code and target API specification. First, the Preprocess
will parse the source code into control flow automata (CFA),
which is an extension of CFG, where we classify the edges into
two types: (1) ControlEdge to carry the concrete statements to
conduct semantic computation for the static analysis, and (2)
SummaryEdge to maintain the program summary information,
which is pre-computed to skip the loops and function calls for
large-scale programs. Then, the Preprocessor will parse the
IMSpec specification according to the syntax of IMSpec and
verify the semantic conflicts among the specification. To help
the users build specifications, we have implemented a GUI
client name IMSpec Writer (see Section II-C). More details
of IMSpec, including the syntax, the semantic and examples,
can be found in our repository.

Static Analysis Engine. The static analysis engine is built
to conduct API-misuse bug detection using the CFA and
specification. Similar to the traditional static analysis, the key
challenge of large and complex programs is to overcome the
path-explosion problem. We make two design decisions to
achieve scalability without sacrificing substantial accuracy:
limiting the interprocedural analysis and unrolling loops ac-
cording to preliminary experiments. In details, our engine
consists of three steps. (1) An entry selection algorithm is
proposed to select the analysis targets. (2) Then, our engine
performs under-constrained symbolic execution to generate
program path traces that capture rich semantic information for
each target API defined in the specifications. (3) Finally, the
engine uses the constraints defined in IMSpec and the program
path traces to detect API-misuse bugs.

Result Generator. To achieve the scalability for real-world
programs, we use a limiting interprocedural strategy to address
the path-explosion problem. Taking the bug traces generated
from the static analysis engine, the result generator will first



(a) Step 1: Write specification by IMSpec Writer

(b) Step 3: Audit detection results by Report Displayer

Fig. 3: Usage of IMChecker Toolkit

filter out the false positives according to the interprocedural
semantics and usage statistics. In the end, we produce the final
bug report in a well-defined format. We implement a Report
Displayer to help the user audit the bug report.

B. Implementation

IMChecker is built in Java language. We preprocess the
source code into LLVM-IR 3.92, which provides a typed, static
single assignment (SSA) and well-suited low-level language.
We parse the LLVM-IR by javacpp3 and build the CFAs. To
this end, we can conduct a path-, field- and context-sensitive
analysis. We implement a point-to and range analysis based
on abstracted AccessPath proposed by Bodden et al. [11] to
collect rich semantic information. Our specification language
IMSpec and bug report is formatted in the human-readable
data serialization language YAML4. We build our GUI using
the Python-Tkinter package5.

C. Usage

We package IMChecker with two user-friendly GUI (IM-
Spec Writer and Report Displayer) into a toolkit, which can
be used in simple command lines. Our toolkit can be used

2http://releases.llvm.org/3.9.0/docs/ReleaseNotes.html
3https://github.com/bytedeco/javacpp
4http://yaml.org/
5https://docs.python.org/3.6/library/tkinter.html

in the following three steps (with the code in Figure 1 as an
example):
1 ubuntu@˜: python3 imspec_writer.py
2 ubuntu@˜: python3 engine.py --spec=spec.yaml

[--specDefine=define.h] --input=example.c
3 ubuntu@˜: python3 report_displayer.py

Step1: imspec writer.py is used to call the writer client
as shown in Figure 3a. We produce the specification into
the YAML format as illustrated in the IMSpec Instance box.
Therefore, the users can direct the write specification accord-
ing to IMSpec syntax.
Step2: engine.py is used to call the static analysis engine. The
engine requires the specification ‘spec.yaml’ and a compilable
c file or a LLVM-IR file, which is compiled by clang with the
‘-S -emit-llvm -g’ options. Parameter ‘specDefine’ is used to
import the macros defined in ‘spec.yaml’, such as including
error codes. For real-world projects that can be built by clang,
we provide a build-capture tool ‘bcmake’ to generate the input
files (see our repository for details). We output the analysis
status into the terminal. Bug detection results are output in
the format of YAML.
Step3: report displayer.py is used to call the bug report
visualizer to audit the results as shown in Figure 3b. When
the users select a target API, the Report Displayer will list
all potential bugs on the left Bug List panel. For each bug
instance, we provide the bug description and reference usages
on the right Ref List panel.

For more details of IMSpec and our tools, the users can
refer to the user manual in our repository at https://github.
com/tomgu1991/IMChecker.

TABLE I: Evaluation Results on API-Misuse Benchmark

Case Info APISan Clang-SA IMChecker
Type Total Report TP Report TP Report TP
IPU 510 310 0 107 105 490 423
IEH 612 446 173 0 0 580 506
ICC 1050 447 435 710 565 1012 878
Total 2172 1203 608 817 670 2082 1807

Precision% 50.54 82.01 86.79
Recall(A-Rα)% 27.99-36.58 30.84-42.95 83.20-83.20

A-Rα is recall results with All cases and Refined result that we remove the
types where a tool fails to detect all cases, such as IPU for APISan.

III. EVALUATION

We evaluate IMChecker on a controlled dataset from the
Juliet Test Suite benchmark. IMChecker is compared with
two state-of-the-art tools: APISan [5] and Clang Static Ana-
lyzer6, both of which are designed for multiple types of API-
misuse bugs and frequently mentioned in other works (Errdoc
performs well on real-world projects but only supports IEH
bugs). We also apply IMChecker to the latest versions of real-
world projects, including Linux kernel-4.18-rc4, OpensSSL-
1.1.1-pre8 and packages using the OpenSSL library (e.g. dma,
exim, hexchat, httping and open-vm-tools) in Ubuntu 16.04.
All tools run on Ubuntu 16.04 LTS (64-bit) with a Core i5-
4590@3.30 GHz Intel processor and 16 GB memory.

6http://clang-analyzer.llvm.org/



Table I shows the controlled evaluation results. In to-
tal, we select 2172 single cases, each of which contains
a bug and several correct usages, to evaluate the precision
and recall. There are three types of API-misuse bugs and
13 different Common Weakness Enumeration types (i.e.,
IPU-CWE121/122/131/476/590, IEH-CWE252/253/390, ICC-
CWE401/404/415/690/775).

From the true positive (TP) columns of each tool, we
observe that APISan fails to detect the IPU bugs and Clang-
SA fails in IEH on this dataset. We investigate the cases and
algorithms behind the tools. The result shows that APISan only
supports the bugs with an explicit validation checking, which
indicates that it will fail in bugs that require a semantic infer-
ring, such as CWE-590 free-memory-not-on-heap. Although
Clang-SA provides many checkers targeted at finding API
usage bugs, it fails to detect the error handling bugs. Similar to
most universal static analysis tools, it hard-codes the detecting
algorithm and hardly considers the program-specific semantic.
Moreover, Clang-SA prefers a conservative strategy, where
they only report the bugs with high confidence to improve
the precision. Leveraging a DSL to capture the program-
specific properties and a static analysis engine to compute rich
semantic, IMChecker finds 1137-1199 more bugs with a more
accurate result, which improves 4.78-36.25% in precision and
40.25-55.21% in recall.

The main motivation of IMChecker is to detect API-misuse
bugs in real-world programs. In total, IMChecker detects 75
previously unknown bugs. We are currently attempting to
create issues and patches for all bugs and send them to the
developers of each program. Until now, 61 of the new bugs
have been confirmed by the developers (See our repository for
details.) For example, in Figure 4, we present a memory-leak
bug found in OpenSSL (Issue #6781), which was fixed in two
stable versions and the master branch within eight hours after
we submitted the issue with a bug description, an explanation
of the bug traces and a potential fix strategy.

Fig. 4: Screenshot of a memory leak bug found by IMChecker,
which is fixed at eight hours on the two stable versions and
mainline branch.

IV. CONCLUSION

Modern APIs are rapidly evolving and error-prone. The
incorrect usages of APIs will cause severe bugs. In this paper,
we propose IMChecker to vet the API usages in C programs.
We evaluated our approach on a widely used benchmark and
real-world projects. Our results show that our methods perform
better than the current state-of-the-art techniques. We also
find 75 previously unknown bugs, 61 of which have been
confirmed by the developers. In the future, we will conduct
experiments on more programs and investigate the heuristics to
automatically rank bug reports based on the potential severity.

ACKNOWLEDGMENT

The author would like to thank the anonymous review-
ers. This research is sponsored in part by National Sci-
ence and Technology Major Project of China (Gran No.
2016ZX01038101), and the National Key Research and De-
velopment Program of China (Grant No. 2015BAG14B01-02,
2016QY07X1402)

REFERENCES

[1] S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini,
“Mubench: a benchmark for api-misuse detectors,” in Proceedings of the
13th International Conference on Mining Software Repositories, MSR
2016, Austin, TX, USA, May 14-22, 2016, 2016, pp. 464–467.

[2] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: validating
SSL certificates in non-browser software,” in the ACM Conference on
Computer and Communications Security, CCS’12, Raleigh, NC, USA,
October 16-18, 2012, 2012, pp. 38–49.

[3] Z. Li and Y. Zhou, “Pr-miner: automatically extracting implicit program-
ming rules and detecting violations in large software code,” in Proceed-
ings of the 10th European Software Engineering Conference held jointly
with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2005, Lisbon, Portugal, September 5-9, 2005,
2005, pp. 306–315.

[4] Y. Tian and B. Ray, “Automatically diagnosing and repairing error
handling bugs in C,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017, 2017, pp. 752–762.

[5] I. Yun, C. Min, X. Si, Y. Jang, T. Kim, and M. Naik, “Apisan: Sanitizing
API usages through semantic cross-checking,” in 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016.,
2016, pp. 363–378.

[6] O. Legunsen, W. U. Hassan, X. Xu, G. Rosu, and D. Marinov, “How
good are the specs? a study of the bug-finding effectiveness of existing
java API specifications,” in Proceedings of the 31st IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2016,
Singapore, September 3-7, 2016, 2016, pp. 602–613.

[7] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “A
systematic evaluation of static api-misuse detectors,” IEEE Transactions
on Software Engineering, pp. 1–1 (Early Access), 2018.

[8] S. K. Samantha, H. A. Nguyen, T. N. Nguyen, and H. Rajan, “Ex-
ploiting implicit beliefs to resolve sparse usage problem in usage-based
specification mining,” vol. 1, no. OOPSLA, pp. 83:1–83:29, 2017.

[9] D. A. Ramos and D. R. Engler, “Under-constrained symbolic execution:
Correctness checking for real code,” in 24th USENIX Security Sympo-
sium, USENIX Security 15, Washington, D.C., USA, August 12-14, 2015.,
2015, pp. 49–64.

[10] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral,
B. E. Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis,
“In defense of soundiness: a manifesto,” Commun. ACM, vol. 58, no. 2,
pp. 44–46, 2015.

[11] J. Lerch, J. Späth, E. Bodden, and M. Mezini, “Access-path abstraction:
Scaling field-sensitive data-flow analysis with unbounded access paths
(T),” in 30th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015,
2015, pp. 619–629.


