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ABSTRACT
Static analysis has long prevailed as a promising approach to detect
program bugs at an early development process to increase software
quality. However, such tools face great challenges to balance the
false-positive rate and the false-negative rate in practical use. In this
paper, we present VBSAC, a value-based static analyzer for C aiming
to improve the precision and recall. In our tool, we employ a plug-
gable value-based analysis strategy. A memory skeleton recorder
is designed to maintain the memory objects as a baseline. While
traversing the control flow graph, diverse value-based plug-ins an-
alyze the specific abstract domains and share program information
to strengthen the computation. Simultaneously, checkers consume
the corresponding analysis results to detect bugs. We also provide
a user-friendly web interface to help users audit the bug detection
results. Evaluation on two widely-used benchmarks shows that we
perform better to state-of-the-art bug detection tools by finding
221∼339 more bugs and improving F-Score 9.88%∼40.32%.

CCS CONCEPTS
• Software and its engineering→ Automated static analysis.
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1 INTRODUCTION
Modern software system development process is a complex and
challenging task. Detecting and fixing software bugs is far cheaper
earlier in the developing life cycle. To this end, static analysis has
long prevailed as one of the most promising technique over the
last years, which only requires the source code without having to
run the code [10]. Unfortunately, static analysis tools face great
challenges in practice [14]. One of the most important reasons
is the high false positive rate. An empirical study [1] found that
users would lose confidence in a tool if its false positive rate was
higher than 30%. To improve precision, several tools only report the
bugs with high confidence, which results in ignorance of potential
problems.

Many researchers have devoted a lot of efforts to improve bug de-
tection accuracy [5, 10]. However, the main obstacles to conducting
a precise analysis are:

(1) Insufficient value analysis. Most of the existing static
analysis techniques run their abstract analysis to reach a
fixed-point before performing bug detection. But this can be
problematic when running multiple analyses with different
precision in a single module, where the precision of the tool
will be fundamentally limited to the least precise analysis.

(2) Inefficient information alternation.Anotherwidely-used
technique performs bug-finding by separate checkers which
maintain own abstract states. However, it may fail to detect
bugs needed deep semantics in other checkers. For exam-
ple, pointer analysis usually needs intervals to calculate an
explicit offset. Therefore efficient information alternation
matters very much in a precise static analysis.

In this paper, we present VBSAC, a value-based static analyzer
for C code bug detection. In our tool, we employ a pluggable value-
based analysis strategy, where analysis and detection processes are
separated when traversing the control flow graph. With a memory
skeleton recorder designed to depict memory objects generation
and elimination as a baseline, different value-based plug-ins can be
used for analyzing specific abstract domains and exchange program
state information to strengthen the computation. Checkers will
consume the analysis results to perform bug detection for different
types. In this way, we can improve the precision and detect multiple
types of bugs simultaneously without stopping when a bug is found.
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We generate concrete traces for each bug and filter the duplicated
ones. The final bug reports are produced in a well-defined format
for users to audit through a web interface. We implement our tool
on top of LLVM-IR, which provides a well-suited low-level language
and can be generated for different languages.

We evaluate our tool on test cases from two widely-used bench-
marks covering eight Common Weakness Enumeration (CWE)1.
The results of the experiments show that, with different plug-ins
sharing program state information to refine the computation, VB-
SAC detects 221∼339 more bugs and improves F-Score 9.88%∼
40.32% compared with state-of-the-art static analysis tools. Our
tool, benchmark, and results can be downloaded from our website2.

2 RELATEDWORK
There are many research works [5] and widely-used tools [7, 9, 11,
12] applying static analysis to detect bugs in C code. CPAChecker [2]
is a configurable tool aiming at integrating different program analy-
sis and model checking approaches in one single formalism. Frama-
C [8] provides static analysis embedded into a value analysis frame-
work. Machine learning has been widely combined with traditional
program analysis approaches to detect bugs in recent years [16].
However, these tools require users to manually annotate program
properties or rely on the known bugs to train models, which is not
as robust as an automatic approach. MPAnalyzer [6] is a tool to
detect unintended inconsistencies in source codes. Same as MPAna-
lyzer focusing on a specific type of bugs, IntPTI [4] aims at integer
errors, Vojdani [13] detects locking idioms in Linux device drivers,
and Melton [15] is proposed for precise memory leak detection.

Main Difference VBSAC also takes advantage of well-known
program analysis techniques to provide an automatic bug-finding
tool for multiple types of bugs. Different from the existing static
analysis techniques which run their abstract analysis before per-
forming bug detection [2] or find bugs in separate checkers main-
taining own abstract states [7, 11]. We employ a pluggable value-
based strategy, where different plug-ins maintain its own abstract
domain values and exchange program properties and refine values
to improve the precision.

3 DESIGN OF VBSAC
As presented in Figure 1, the work-flow of VBSAC consists of
three phases. Code parsing phase preprocesses the source code
into LLVM-IR and builds the control flow automata(CFA) which is
an extended control flow graph. Bug detecting phase constructs the
analysis module with different value-based plug-ins and conducts
the bug-finding process. When detecting phase finished, report
generating phase will eliminate duplicated bug traces and produce
the final bug report. End users can review the results via the web
interface.

3.1 Code Parsing Phase
The use of our tool is to provide LLVM-IR files as input. For a single
file, we can use clang to preprocess the source file. For projects, the
compilation commands in Makefile can add -E flag to preprocess

1https://cwe.mitre.org
2 https://github.com/tomgu1991/VBSAC

all the *.c files to *.i files, which are self-contained source files with
macros expanded and necessary declarations included. To provide a
precise analysis, we build CFA by extending the traditional control
flow graph with edges classified into two types, where ControlEdge
is proposed to carry the LLVM-IR instruction to conduct the con-
crete semantic computation and SummaryEdge provides a summary
mechanism to support analysis for large-scale code by skipping the
loops and function calls using the summaries pre-computed.

3.2 Bug Detecting Phase
To improve the accuracy of our tool, we employ a pluggable value-
based analysis strategy, where Analysis Module maintains the cor-
rect program properties in each domain separately and Checker
Module detects bugs. In this way, we can improve the precision and
detect multiple types of bugs simultaneously without stopping the
analysis when a bug detected.

Analysis Module is designed to conduct abstract analysis on
the input CFA. To provide a flow-sensitive and interprocedural
analysis, we implement three fundamental analysis, Location, Call-
Stack and Bound to record the program location, call depth and loop
iteration while traversing the CFA. We explicitly evaluate the value
of path conditions to provide a path-sensitive analysis. We use a
Memory Skeleton Recorder(MSR) to maintain the memory objects
generated and destroyed. With MSR as a baseline, a value plug-in
maintains own abstract state and exchanges information to refine
the computation results with others. Such as pointer plug-in will
use range plug-in to explicitly calculate the offset. In the analysis
process, we maintain an abstract program state as S =< m, P >,
wherem is the memory structure computed by MSR and P consists
of different value plug-ins such as pointer and interval. When the
analyzing phase traverses the CFA edge as e , we compute the new
state in two steps: S(m, P)

e
→ S

′

(m′, P) to update the memorym

and record the changes as ∆, and S
′

(m′, P))
e,∆
→ S

′′

(m′, P ′) for each
plug-in p ∈ P to update its own abstract state.

Figure 1: The architecture of VBSAC.
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Checker Module is designed to separate bug detection from
the abstract program state computation for easy configuration and
extension. Each checker will detect a specific type of bugs according
to the abstract program state. We detect bugs in two steps: Pre-
Edge which is before the program state updated and Post-Edge
for the updated state. Pre-Edge will check the program properties
according to the state S , where bugs may be triggered in the current
instruction. Post-Edge will check the program properties according
to the new state S

′′

. This step is designed to find the bugs requiring
the updated states. Another benefit of the separated Checker Module
is that our analysis will not stop when a bug is detected, for the
Analysis Module will maintain the correct program properties. We
generate the concrete traces for each bug and use the Bug Collector
to gather all the bug traces.

3.3 Report Generating Phase
To provide a precise static analysis, we expand loops and function
calls according to the Bound Analysis. In this way, a bug site may be
triggered several times, such as a null pointer dereference problem
in a loop. To eliminate this kind of duplicated bugs, we use a bug
filter to remove the same reports. But, we will remain the bugs from
a different context. For example, a bug in a function f , which is
called fromд1,д2,д3. Wewill produce three bug traces to these bugs,
for they are from different call-context. For all the bugs detected by
VBSAC, we generate the traces for each of them with the detailed
information into an XML file, such as file name and line number.
The XML file can be used in the Web interface for users to audit
the results.

4 IMPLEMENTATION
VBSAC is built on top of LLVM-IR 3.9, which provides a typed,
static single assignment(SSA) and well-suited low-level languages.
LLVM-IR can be generated by compiler front-ends for different
languages, indicating tools can be extended to multiple languages.
We implement a Java API for LLVM-IR based on javacpp3.

For bug detecting phase, we implement our analysis extending
CPA algorithm [2]. We have implemented Location Analysis, Call-
Stack Analysis, and Bound Analysis as fundamental components
to traverse the control flow automata. Currently, we implement a
pointer plug-in based on AccessPath [3] and an interval plug-in
based on multi-range which extended to maintain a fix-length list of
traditional range in Analysis Module. Checkers are implemented to
detect bugs relevant to integer and pointer, such as integer overflow,
divide by zero, memory leak and so on.

To help users better understand our detection results, we provide
a web interface to review the potential bugs as shown in Figure 2.
The file explorer lists source files of the current bug-finding task.
All the bugs are listed on right top of the page and sorted according
to CWEID. By selecting a concrete bug, traces to trigger it are listed
in the right bottom panel with file names and line numbers. In
the Editor Panel, we show the source code with the traces with
a red cross at the beginning, where semantic information will be
presented when cursor rolls over.

3https://github.com/bytedeco/javacpp

1. File Explorer

4. Editor Panel

2. Bug List

3. Bug Traces

5. Path Selection

Figure 2: The web interface of VBSAC.

5 EVALUATION
Experiment Setup. To evaluate VBSAC, we compare with three

open-source tools(Cppcheck[11], Clang Static Analyzer [7], Infer[12])
and a commercial tool with academic permission(PVS-Studio[9]).
They are chosen because of widely mentioned in static analysis
publications. Besides, they are fully automatic tools without man-
ual intervention to add assertions or write specifications, which
is needed in tools such as CPAChecker [2] and Frama-C [8]. Bug
detection accuracy is measured by precision, recall and F-Score
which is the harmonic mean of precision and recall.

precision =
number o f correct buд reports

number o f all the reports
(1)

recall =
number o f correct buд reports

number o f дround truth
(2)

F -Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(3)

The benchmark consists of 568 bugs specific to integer and pointer
from two widely-used benchmarks: Juliet Test Suite for C/C++
V1.34 and ITC-benchmark5. Test cases are classified according to
CWEID as shown in the first two columns in Table 1, including
190-integer-overflow, 191-integer-underflow, 369-divide-by-zero,
401-memory-leak, 415-double-free, 416-use-after-free, 457-use-of-
uninitialized-variable and 476-null-pointer-dereference. Each case
is composed of a bad part with a bug and a good part without the
bug for precision and recall evaluation. All the experiments are
conducted on a desktop under Ubuntu 16.04 with 4G memory.

Results. We present the result of each tool in two columns in Ta-
ble 1, including the number of all the reports as #Rept (true positives
+ false positives), the number of the correct bugs in the reports as
#Correct (true positives). We use - to present that a tool does not
support this type of bugs. In the last four rows, we list the analysis
time, precision, recall and F-score of each tool.

Columns 3-4 illustrate the result of Infer, which is developed
by Facebook for pointer and memory analysis. Infer successfully
detects 217 true bugs in the benchmark with a high precision of
92.34%. However, it misses 49 bugs, resulting in a lower recall of
78.62%. After manually analyzing the reports from Infer, we find it

4https://samate.nist.gov/SRD/testsuite.php
5https://github.com/regehr/itc-benchmarks
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Table 1: Evaluation Result of VBSAC

General Info Infer Cppcheck Clang-SA PVS-Studio VBSAC
CWEID #Buд #Rept #Correct #Rept #Correct #Rept #Correct #Rept #Correct #Rept #Correct
190 80 - - 23 23 13 13 18 16 85 79
191 59 - - 6 6 1 1 40 30 64 58
369 65 - - 9 9 12 12 11 11 65 65
401 81 82 66 22 20 78 71 92 62 84 80
415 62 62 62 60 58 59 59 55 55 64 62
416 50 23 23 0 0 6 6 58 46 54 50
457 88 - - 53 53 69 67 66 63 102 85
476 83 68 66 46 45 54 53 62 59 82 74

Summary 568 235 217 219 214 292 282 402 342 600 553
Time(s) 116.6 30.7 226.6 189.1 655.8

Precision(%) 92.34 97.71 96.57 85.07 92.17
Recall(%) 78.62 37.67 49.65 60.21 97.40
F-score(%) 84.92 54.38 65.58 70.52 94.70

#Buд is the number of ground truth. #Rept and #Correct is the number of bug reports and the correct bugs in the reports.

fails to detect the bugs requiring a path-sensitive and interprocedu-
ral analysis, resulting in missing bugs cross functions and infeasible
paths to be considered. In VBSAC, we employ an interprocedural
analysis and combine interval and pointer to explicitly evaluate
a path condition to improve the analysis accuracy. VBSAC detect
266=(80+62+50+74) true bugs with 18 false positives for the tracks
supported by Infer, indicating that VBSAC improves the recall from
78.62 to 93.66%.

From columns 5-10, we can observe that Cppcheck and Clang-
SA perform better in precision with a ratio of 97.71% and 96.57%.
However, they miss more than half of the bugs in the benchmark,
especially in interval relevant bugs. After analyzing the results of
these two tools, we find they preferred a conservative strategy that
they only report the bugs with high confidence. PVS-Studio detects
10.56%∼22.54% more bugs compared with the above tools with a
moderate loss of precision. However, we find that all of them fail
to provide a precise value analysis, especially for interval analy-
sis. This compromising strategy can speed up the analysis process,
while it has high impacts on the loop unrolling and path selection,
resulting in potential bugs ignored because of lack of possible range
of values. With different value-based plug-ins maintaining own do-
mains and exchanging properties, VBSAC provides a more accurate
analysis solution. Compared with all the tools on F-score, VBSAC
achieves 94.70% on the benchmark, improving 9.88%∼40.32% with
the capability of multiple types of bugs.

Therefore, it is reasonable to conclude the combination of dif-
ferent value-based plug-ins will help VBSAC to perform a more
precise analysis and detect more types of bugs. With the bug traces
displayed in web interface, we can understand the bug details better,
which will promote the fixing process.

6 CONCLUSION
In this paper, we present VBSAC, an automatic static analyzer
for C. It employs a pluggable value-based strategy to provide a
flow-sensitive, path-sensitive, and interprocedural analysis. We
illustrate the tool architecture and implementation. By providing a

web visualizer, we hope to fill the gap between end users and the
tool. The evaluation on two widely-used benchmarks demonstrates
that VBSAC performs better on precision and recall compared with
the state-of-the-art tools. In the future, we plan to implement more
plug-ins and adapt our tool to more real-world projects.
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